skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vadeboncoeur, Yvonne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interface between terrestrial ecosystems and inland waters is an important link in the global carbon cycle. However, the extent to which allochthonous organic matter entering freshwater systems plays a major role in microbial and higher-trophic-level processes is under debate. Human perturbations can alter fluxes of terrestrial carbon to aquatic environments in complex ways. The biomass and production of aquatic microbes are traditionally thought to be resource limited via stoichiometric constraints such as nutrient ratios or the carbon standing stock at a given timepoint. Low concentrations of a particular constituent, however, can be strong evidence of its importance in food webs. High fluxes of a constituent are often associated with low concentrations due to high uptake rates, particularly in aquatic food webs. A focus on biomass rather than turnover can lead investigators to misconstrue dissolved organic carbon use by bacteria. By combining tracer methods with mass balance calculations, we reveal hidden patterns in aquatic ecosystems that emphasize fluxes, turnover rates, and molecular interactions. We suggest that this approach will improve forecasts of aquatic ecosystem responses to warming or altered nitrogen usage. 
    more » « less
  2. It seems improbable that a thin veneer of attached algae coating submerged surfaces in lakes and rivers could be the foundation of many freshwater food webs, but increasing evidence from chemical tracers supports this view. Attached algae grow on any submerged surface that receives enough light for photosynthesis, but animals often graze attached algae down to thin, barely perceptible biofilms. Algae in general are more nutritious and digestible than terrestrial plants or detritus, and attached algae are particularly harvestable, being concentrated on surfaces. Diatoms, a major component of attached algal assemblages, are especially nutritious and tolerant of heavy grazing. Algivores can track attached algal productivity over a range of spatial scales and consume a high proportion of new attached algal growth in high-light, low-nutrient ecosystems. The subsequent efficient conversion of the algae into consumer production in freshwater food webs can lead to low-producer, high-consumer biomass, patterns that Elton (1927) described as inverted trophic pyramids. Human perturbations of nutrient, sediment, and carbon loading into freshwaters and of thermal and hydrologic regimes can weaken consumer control of algae and promote nuisance attached algal blooms. 
    more » « less
  3. null (Ed.)
    Abstract Nearshore (littoral) habitats of clear lakes with high water quality are increasingly experiencing unexplained proliferations of filamentous algae that grow on submerged surfaces. These filamentous algal blooms (FABs) are sometimes associated with nutrient pollution in groundwater, but complex changes in climate, nutrient transport, lake hydrodynamics, and food web structure may also facilitate this emerging threat to clear lakes. A coordinated effort among members of the public, managers, and scientists is needed to document the occurrence of FABs, to standardize methods for measuring their severity, to adapt existing data collection networks to include nearshore habitats, and to mitigate and reverse this profound structural change in lake ecosystems. Current models of lake eutrophication do not explain this littoral greening. However, a cohesive response to it is essential for protecting some of the world's most valued lakes and the flora, fauna, and ecosystem services they sustain. 
    more » « less